Wall - Crossing Functors and D - Modulesalexander Beilinson

نویسنده

  • ALEXANDER BEILINSON
چکیده

We study Translation functors and Wall-Crossing functors on inn-nite dimensional representations of a complex semisimple Lie algebra using D-modules. This functorial machinery is then used to prove the Endomorphism-theorem and the Structure-theorem; two important results were established earlier by W. Soergel in a totally diierent way. Other applications to the category O of Bernstein-Gelfand-Gelfand are given, and some conjectural relationships between Koszul duality, Verdier duality and convolution functors are discussed. A geometric interpretation of tilting modules is given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : a lg - g eo m / 9 70 90 22 v 4 5 D ec 1 99 8 WALL - CROSSING FUNCTORS AND D - MODULES

We study Translation functors and Wall-Crossing functors on infinite dimensional representations of a complex semisimple Lie algebra using D -modules. This functorial machinery is then used to prove the Endomorphism-theorem and the Structure-theorem, two important results established earlier by W. Soergel in a totally different way. Other applications to the category O of Bernstein-GelfandGelfa...

متن کامل

Wall-crossing Functors

Db(Coh(Aθ λ )) ∼ −→ D(Coh(Aλ)) for two different generic θ, θ′. These derived equivalences will play a crucial role in proving that ImCCv ⊂ Lω[ν]. They were introduced in [BPW, Section 6] under the name of twisting functors. Let us recall from Lecture 3 that abelian localization holds for (λ + nθ, θ) for all n sufficiently large, see Proposition 2.2 there. Also recall that Coh(Aλ) ∼ −→ Coh(Aλ+n...

متن کامل

Derived Functors Related to Wall Crossing

The setting is the representation theory of a simply connected, semisimple algebraic group over a field of positive characteristic. There is a natural transformation from the wall-crossing functor to the identity functor. The kernel of this transformation is a left exact functor. This functor and its first derived functor are evaluated on the global sections of a line bundle on the flag variety...

متن کامل

Computing Noncommutative Deformations of Presheaves and Sheaves of Modules

We describe a noncommutative deformation theory for presheaves and sheaves of modules that generalizes the commutative deformation theory of these global algebraic structures, and the noncommutative deformation theory of modules over algebras due to Laudal. In the first part of the paper, we describe a noncommutative deformation functor for presheaves of modules on a small category, and an obst...

متن کامل

Wall-crossing Functors and D-modules

We will be concerned here with infinite dimensional representations of a complex semisimple Lie algebra g . In more detail, let Ug be the universal enveloping algebra of g , and let Z(g) be the center of Ug . We consider the category of Ug -modules annihilated by a great enough (unspecified) power of a maximal ideal in Z(g) . It is natural to compare the categories corresponding to two differen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999